Home / Security / Kaspersky Lab: Threat Predictions in 2018

Kaspersky Lab: Threat Predictions in 2018

Threat Predictions in 2018

  • Automotive. The growing risk of a vehicle’s systems being infiltrated or having its safety, privacy and financial elements violated, requires manufacturers to understand and apply IT security.
  • Connected Health. Cyber-villains increasingly understand the value of health information, its ready availability, and the willingness of medical facilities to pay to get it back.
  • Industrial Security. The most significant threat to industrial systems in 2017 was encryption ransomware attacks.
  • Connected Life. The average home now has around three connected computers and four smart mobile devices. The risk of cyberattack can be the furthest thing from our mind.

As we stated last year, rather than thinly-veiled vendor pitching, our predictions are an attempt to bring to bear our research throughout the year in the form of trends likely to peak in the coming year.

Threat Predictions for Automotive in 2018

By Kaspersky Lab on November 15, 2017

The landscape in 2017

Modern cars are no longer just electro-mechanical vehicles. With each generation, they become more connected and incorporate more intelligent technologies to make them smarter, more efficient, comfortable and safe. The connected-car market is growing at a five-year compound annual growth rate of 45% — 10 times faster than the car market overall.

In some regions (e.g. the EU or Russia) two-way connected systems (eCall, ERA-GLONASS) are extensively implemented for safety and monitoring purposes; and all major auto manufacturers now offer services that allow users to interact remotely with their car via a web interface or a mobile app.

Remote fault diagnostics, telematics and connected infotainment significantly enhance driver safety and enjoyment, but they also present new challenges for the automotive sector as they turn vehicles into prime targets for cyberattack. The growing risk of a vehicle’s systems being infiltrated or having its safety, privacy and financial elements violated, requires manufacturers to understand and apply IT security. Recent years have seen a number (here, here, and here) of examples highlighting the vulnerability of connected cars.

What can we expect in 2018?

Gartner estimates that there will be a quarter of a billion connected cars on the roads by 2020. Others suggest that by then around 98% of cars will be connected to the Internet. The threats we face now, and those we expect to face over the coming year should not be seen in isolation – they are part of this continuum – the more vehicles are connected, in more ways, the greater the surface and opportunities for attack.

The threats facing the automotive sector over the coming 12 months include the following:

Vulnerabilities introduced through lack of manufacturer attention or expertise, combined with competitive pressures. The range of connected mobility services being launched will continue to rise, as will the number of suppliers developing and delivering them. This ever-growing supply (and the likelihood of products/suppliers being of variable quality), coupled with a fiercely competitive marketplace could lead to security short cuts or gaps that provide an easy way in for attackers.

Vulnerabilities introduced through growing product and service complexity. Manufacturers serving the automotive sector are increasingly focused on delivering multiple interconnected services to customers. Every link is a potential point of weakness that attackers will be quick to seize on. An attacker only needs to find one insecure opening, whether that is peripheral such as a phone Bluetooth or a music download system, for example, and from there they may be able to take control of safety-critical electrical components like the brakes or engine, and wreak havoc.

No software code is 100% bug free – and where there are bugs there can be exploits. Vehicles already carry more than 100 million lines of code. This in in itself represents a massive attack surface for cybercriminals. And as more connected elements are installed into vehicles, the volume of code will soar, increasing the risk of bugs. Some automotive manufacturers, including Tesla have introduced specific bug bounty programs to address this.

Further, with software being written by different developers, installed by different suppliers, and often reporting back to different management platforms, no one player will have visibility of, let alone control over, all of a vehicle’s source code. This could make it easier for attackers to bypass detection.

Apps mean happiness for cybercriminals. There are a growing number of smartphone apps, many introduced by car manufacturers, which owners can download to remotely unlock their cars, check the engine status or find its location. Researchers have already demonstrated proof of concepts of how such apps can be compromised. It will not be long before Trojanized apps appear that inject malware direct into the heart of an unsuspecting victim’s vehicle.

With connected components increasingly introduced by companies more familiar with hardware than software, there is a growing risk that the need for constant updates could be overlooked. This could make it harder, if not impossible for known issues to be patched remotely. Vehicle recalls take time and cost money and in the meantime many drivers will be left exposed.

Connected vehicles will generate and process ever more data – about the vehicle, but also about journeys and even personal data on the occupants – this will be of growing appeal to attackers looking to sell the data on the black market or to use it for extortion and blackmail. Car manufacturers are already under pressure from marketing companies eager to get legitimate access to passenger and journey data for real time location-based advertising.

Fortunately, growing awareness and understanding of security threats will result in the first cyber secure devices for remote diagnostic and telematics data appearing on the marke
Further, lawmakers will come up with requirements and recommendations for making cybersecurity a mandatory part of all connected vehicles.

Last but not least, alongside existing safety certification there will be new organizations set up that are responsible for cybersecurity certification. They will use clearly defined standards to assess connected vehicles in terms of their resistance to cyberattacks.

Recommended action

Addressing these risks involves integrating security as standard, by design, focused on different parts of the connected car ecosystem. Defensive software solutions could be installed locally on individual electrical components— for instance, the brakes — to reinforce them against attacks. Next, software can protect the vehicle’s internal network as a whole by examining all network communications, flagging any changes in standard in-vehicle network behaviour and stopping attacks from advancing in the network. Overarching this, a solution needs to protect all components that are connected externally, to the Internet. Cloud security services can detect and correct threats before they reach the vehicle. They also can send the vehicle over-the-air updates and intelligence in real time. All of this should be supported with rigorous and consistent industry standards.

Threat Predictions for Connected Health in 2018

By Kaspersky Lab on November 15, 2017

The landscape in 2017

In 2017, Kaspersky Lab research revealed the extent to which medical information and patient data stored within the connected healthcare infrastructure is left unprotected and accessible online for any motivated cybercriminal to discover. For example, we found open access to around 1,500 devices used to process patient images. In addition, we found that a significant amount of connected medical software and web applications contains vulnerabilities for which published exploits exist.

This risk is heightened because cyber-villains increasingly understand the value of health information, its ready availability, and the willingness of medical facilities to pay to get it back.

What can we expect in 2018?

The threats to healthcare will increase as ever more connected devices and vulnerable web applications are deployed by healthcare facilities. Connected healthcare is driven by a number of factors, including a need for resource and cost efficiency; a growing requirement for remote, home-based care for chronic conditions like diabetes and ageing populations; consumer desire for a healthy lifestyle; and a recognition that data-sharing and patient monitoring between organizations can significantly enhance the quality and effectiveness of medical care.

The threats facing these trends over the coming 12 months include the following:

Attacks targeting medical equipment with the aim of extortion, malicious disruption or worse, will rise. The volume of specialist medical equipment connected to computer networks is increasing. Many such networks are private, but one external Internet connection can be enough for attackers to breach and spread their malware through the ‘closed’ network. Targeting equipment can disrupt care and prove fatal – so the likelihood of the medical facility paying up is very high.

There will also be a rise in the number of targeted attacks focused on stealing data. The amount of medical information and patient data held and processed by connected healthcare systems grows daily. Such data is immensely valuable on the black market and can also be used for blackmail and extortion. It’s not just other criminals who could be interested: the victim’s employer or insurance company might want to know as it could impact premiums or even job security.

There will be more incidents related to ransomware attacks against healthcare facilities. These will involve data encryption as well as device blocking: connected medical equipment is often expensive and sometimes life-critical, which makes them a prime target for attack and extortion.

The concept of a clearly-defined corporate perimeter will continue to ‘erode’ in medical institutions, as ever more workstations, servers, mobile devices and equipment go online. This will give criminals more opportunities to gain access to medical information and networks. Keeping defenses and endpoints secure will be a growing challenge for healthcare security teams as every new device will open up a new entry point into the corporate infrastructure.

Sensitive and confidential data transmitted between connected ‘wearables’, including implants, and healthcare professionals will be a growing target for attack as the use of such devices in medical diagnosis, treatment and preventative care continues to increase. Pacemakers and insulin pumps are prime examples.

National and regional healthcare information systems that share unencrypted or otherwise insecure patient data between local practitioners, hospitals, clinics and other facilities will be a growing target for attackers looking to intercept data beyond the protection of corporate firewalls. The same applies to data shared between medical facilities and health insurance companies.
The growing use by consumers of connected health and fitness gadgets will offer attackers access to a vast volume of personal data that is generally minimally protected. The popularity of health-conscious, connected lifestyles means that fitness bracelets, trackers, smart watches, etc. will carry and transmit ever larger quantities of personal data with only basic security – and cybercriminals won’t hesitate to exploit this.

Disruptive attacks – whether in the form of denial of service attacks or through ‘ransomware’ that simply destroys data (such as WannaCry) – are a growing threat to increasingly digital health care facilities. The ever increasing number of work stations, electronic records management and digital business processes that underpin any modern organization broadens the attack surface for cybercriminals. In healthcare, they take on an extra urgency, as any disruption can in real terms become a matter of life or death.

Last, but not least, emerging technologies such as connected artificial limbs, implants for smart physiological enhancements, embedded augmented reality etc. designed both to address disabilities and create better, stronger, fitter human beings – will offer innovative attackers new opportunities for malicious action and harm unless they have security integrated from the very first moment of design.

Threat Predictions for Industrial Security in 2018

By Kaspersky Lab on November 15, 2017

The landscape in 2017

2017 was one of the most intense in terms of incidents affecting the information security of industrial systems. Security researchers discovered and reported hundreds of new vulnerabilities, warned of new threat vectors in ICS and technological processes, provided data on accidental infections of industrial systems and detected targeted attacks (for example, Shamoon 2.0/StoneDrill). And, for the first time since Stuxnet, discovered a malicious toolset some call a ‘cyber-weapon’ targeting physical systems: CrashOverride/Industroyer.

However, the most significant threat to industrial systems in 2017 was encryption ransomware attacks. According to a Kaspersky Lab ICS CERT report, in the first half of the year experts discovered encryption ransomware belonging to 33 different families. Numerous attacks were blocked, in 63 countries across the world. The WannaCry and ExPetr destructive ransomware attacks appear to have changed forever the attitude of industrial enterprises to the problem of protecting essential production systems.

What can we expect in 2018?

  1. A rise in general and accidental malware infections. With few exceptions, cybercriminal groups have not yet discovered simple and reliable schemes for monetizing attacks on industrial information systems. Accidental infections and incidents in industrial networks caused by ‘normal’ (general) malicious code aimed at a more traditional cybercriminal target such as the corporate networks, will continue in 2018. At the same time, we are likely to see such situations result in more severe consequences for industrial environments. The problem of regularly updating software in industrial systems in line with the corporate network remains unresolved, despite repeated warnings from the security community.
  2. Increased risk of targeted ransomware attacks. The WannaCry and ExPetr attacks taught both security experts and cybercriminals that operational technology (OT) systems are more vulnerable to attack than IT systems, and are often exposed to access through the Internet. Moreover, the damage caused by malware can exceed that in the corresponding corporate network, and ‘firefighting’ in the case of OT is much more difficult. Industrial companies have demonstrated how inefficient their organization and staff can be when it comes to cyberattacks on their OT infrastructure. All of these factors make industrial systems a desirable target for ransomware attacks.
  3. More incidents of industrial cyberespionage. The growing threat of organized ransomware attacks against industrial companies could trigger development of another, related area of cybercrime: the theft of industrial information systems data to be used afterwards for the preparation and implementation of targeted (including ransomware) attacks.
  4. New underground market activity focused on attack services and hacking tools. In recent years, we have seen growing demand on the black market for zero day exploits targeting ICS. This tells us that criminals are working on targeted attack campaigns. We expect to see this interest increase in 2018, stimulating the growth of the black markets and the appearance of new segments focused on ICS configuration data and ICS credentials stolen from industrial companies and, possibly, botnets with ‘industrial’ nodes offerings. Design and implementation of advanced cyberattacks targeting physical objects and systems requires an expert knowledge of ICS and relevant industries. Demand is expected to drive growth in areas such as ‘malware-as-a-service’, ‘attack-vector-design-as-a-service’, ‘attack-campaign-as-a-service’ and more.
  5. New types of malware and malicious tools. We will probably see new malware being used to target industrial networks and assets, with features including stealth and the ability to remain inactive in the IT network to avoid detection, only activating in less secure OT infrastructure. Another possibility is the appearance of ransomware targeting lower-level ICS devices and physical assets (pumps, power switches, etc.).
  6. Criminals will take advantage of ICS threat analyses published by security vendors. Researchers have done a good job finding and making public various attack vectors on industrial assets and infrastructures and analyzing the malicious toolsets found. However, this could also provide criminals with new opportunities. For example, the CrashOverride/Industroyer toolset disclosure could inspire hacktivists to run denial-of-service attacks on power and energy utilities; or criminals may targeted ransomware and may even invent monetizing schemes for blackouts. The PLC (programmable logic controller) worm concept could inspire criminals to create real world malicious worms; while others could try to implement malware using one of standard languages for programming PLCs. Criminals also could recreate the concept of infecting the PLC itself. Both these types of malware could remain undetected by existing security solutions.
  7. Changes in national regulation. In 2018, a number of different cybersecurity regulations for industrial systems will need to be implemented. For example, those with critical infrastructures and industrial assets facilities will be compelled to do more security assessments. This will definitely increase protection and awareness. Thanks to that, we will probably see some new vulnerabilities found and threats disclosed.
  8. Growing availability of, and investment in industrial cyber insurance. Industrial cyber-risk insurance is becoming an integral part of risk management for industrial enterprises. Previously, the risk of a cybersecurity incident was excluded from insurance contracts – just like the risk of a terrorist attack. But the situation is changing, with new initiatives introduced by both cybersecurity and insurance companies. In 2018, this will increase the number of audits/assessments and incident responses undertaken, raising cybersecurity awareness among the industrial facility’s leaders and operators.

 

Threat Predictions for Connected Life in 2018

By Kaspersky Lab on November 21, 2017

Introduction: To be awake is to be online

The average home now has around three connected computers and four smart mobile devices. Hardly surprising, considering that 86 per cent of us check the Internet several times a day or more, and that’s outside of work. Chatting, shopping, banking, playing games, listening to music, booking travel and managing our increasingly connected homes. The risk of cyberattack can be the furthest thing from our mind.

Every year, Kaspersky Lab’s experts look at the main cyberthreats facing connected businesses over the coming 12 months, based on the trends seen during the year. For 2018, we decided to extract some top predictions that also have big implications for everyday connected life.

So what could the hackers be after in 2018?

Security gaps in your connected car. Earlier this year, researchers showed how a hack could shut down all safety features in a car, including airbags. Such attacks will become easier as connected cars contain more and more components that could be accessed digitally. For example: mobile phones can be paired with a vehicle’s head unit via Bluetooth; and Bluetooth was recently found to have more than 8 serious software vulnerabilities. A hacker only has to use one and they will have an access to car systems to conduct further attacks. Some cars have cellular or Wi-Fi connectivity and almost any modern car has a USB-port – all of these can be used in order to deliver infected code to the car’s systems.

The data exchange between the internal systems of a car has been proven to be vulnerable to external interference, both by external researchers and Kaspersky Lab own findings. Given the fact that car industry is planning the development and production cycles years ahead, it is unlikely that all reported issues will be fixed in new connected cars coming on the market in 2018. Most of these cars were designed before cybersecurity became an issue for the automotive industry. That said, we expect that cars coming off the production line after that will have the most critical cybersecurity features implemented and will therefore be safer.

Vulnerable car apps. Most leading car manufacturers now offer apps to make life easier for drivers – they can locate, lock/unlock your car, check tire pressure, request assistance, schedule maintenance and more. Researchers have already shown how many such apps can be hacked to partly take over a car. 2018 could see the first appearance of an infected app that can manage a car or spy on its owner by tracking their location, or collecting authentication data. This data could then be sold on the underground market. Kaspersky Lab researchers have seen signs that authentication data to access connected car apps is already in demand on underground markets. As the number of connected cars increases, this trend will become a bigger problem.

Security gaps in wearable medical devices/implants, for data theft or sabotage. In 2018, there will be an estimated 19 million connected medical wearables, such as insulin pumps, pacemakers, monitors etc. in use, up from 12.8 million today. Companies are already issuing warnings about security gaps, knowing that, in an extreme case hackers could tamper with devices, set them to administer a fatal dose or to otherwise malfunction. This threat will rise in 2018 and probably keep on rising.

Still everywhere. The global pandemic that is ransomware shows no signs of abating. Our data shows that just under a million of our users were attacked with ransomware in 2017, only slightly less than in 2016 – but the actual number of those attacked in 2017 will be much higher. For example, the WannaCry ransomware victim count may exceed 700,000. With malware and distribution tools freely available on the web, attackers have discovered that locking or encrypting people’s data and devices – and those belonging to big companies, hospitals and smart city networks – is an easy and effective way of making money. In 2018 expect more of the same.

Malware, ditto – particularly that targeting Android mobile devices. We live in an increasingly mobile-driven world and hackers have upped their game. In 2017, we saw Android malware poisoning hotel booking, taxi service and ride-sharing apps, targeting mobile payments (SMS- and WAP billing), and using new techniques to bypass OS security. In 2018 we expect to see even more innovation.

Getting you to mine for cryptocurrency coins or stealing your coins. Cryptocurrencies are becoming more popular, so experts predict hackers will tap into people wanting to get a share of the action. In 2018, this could see more people going over to mining cryptocurrencies on their work-computers. We’ll certainly see more attacks designed to steal crypto coins from users, or install hidden mining tools on machines, particularly mobiles. Kaspersky Lab research shows that the number of people hit by such attacks have already exceeded two million in 2017. On the other hand, if handled properly and with the user’s consent, some forms of cryptocurrency mining may become a legal way of monetization for websites and/or apps.

Taking control of your connected stuff to create big botnets. Your home routers, connected webcams and smart thermostats are all great, but they’re likely full of software bugs and if you don’t set a proper password, hackers can pull them into a huge zombie botnet. The infamous ‘Mirai’ botnet that nearly broke the Internet in 2016 was largely made up of CCTV cameras and connected printers – and in 2017 researchers found attackers improving Mirai’s tools. Proven as reliable and effective denial-of-service tools, new botnets built out of insecure devices may emerge in 2018.

Taking control of the world’s connected stuff for large scale disruption. Speaking of smart city technology such as CCTV cameras, what would happen if there was an attack on a city’s light control systems, causing not just blackouts but stroboscopic effects? Over the next year, smart city technologies such as traffic control, lighting, speed cameras, public transport and power supplies, as well as air traffic control infrastructure and more, will be a growing target for hackers. It’s estimated that by 2020 there will be 9.6 billion connected things used in smart cities around the world. Many of them just as buggy and vulnerable as your home router. Disruption to and disabling of these vast connected systems could do untold damage.

Conclusion: Stay awake when online

So there’s some scary stuff and a few not very nice people out there. That shouldn’t stop you from making the most of what connected devices and systems have to offer over the next year and beyond. Fortunately, there are a lot of simple things that you can to stay safe. Here’s a few examples:

  • Make use of the security features that come with your devices: set a decent password and keep the software updated. Not just phones and computers, but everything that is connected.
  • Be selective when choosing a smart device. Ask yourself: Does this really need an internet connection? If the answer is yes, then take the time to understand the device options before buying. If you discover that it has hard-coded passwords, choose a different model.
  • Consider cryptocurrencies as another way of saving and treat them accordingly. Just like you treat your ‘regular’ money.
  • Only install apps from reputable stores like Google Play, created by reputable developers.
  • Last but not least, consider supplementing the OS/device security with some additional software – particularly to keep your family and finances safe. A free version of Kaspersky Lab’s security software is available here.

Check Also

4 Major Aspects of Business Security

Company Safeguards: 4 Major Aspects of Business Security

When your business is not secure, you put yourself, your customers and the integrity of …